NONLINEAR VIDEO EDITING
Course Syllabus

Course Number: AVPA-1213
OCAS Code: None
Course Length: 60 Hours
Career Cluster: Arts, A/V Technology & Communications
Career Pathway: Journalism & Broadcasting
Career Major(s): Audio & Video Production Assistant

Pre-requisite(s): This course teaches students the basics of digital nonlinear video editing. Students edit their raw footage into on-air segments. They learn the concepts, techniques and skills related to this crucial post-production task.

Textbooks: Instructor-created materials

Television Production by Phillip L. Harris, Goodheart-Wilcox (2006)
VideoLab 3.0 CD-ROM by Herbert Zettl, Wadsworth (2004)

Course Objectives:

A. Demonstrate Basic Knowledge of Nonlinear Video Editing.
 1. Define and understand terminology related to nonlinear video editing.
 2. Identify nonlinear editing equipment.

B. Identify the Basic Functions and Resources for Editing.²
 1. Define editing related to audio and video productions.²
 2. Describe the differences between offline and online editing related to low- and high-resolution input, respectively.²
 3. Identify editing skills related to various delivery requirements, including commercial broadcast and other forms of distribution.²
 4. Describe the significance of digital technology and high definition production, and the required equipment related to editing.²

C. Exhibit Knowledge of Computer-Based Development of Video Production and Editing, with an Emphasis on Digital Technology.²
 1. Define terms associated with computer-based production, including motion video: AVI, Quicktime and MPEG; and stills: JPEG and TIFF.²
 2. Identify types of software used in the development of video files and animations.²
 3. Demonstrate how to use software for developing a simple video.²
 4. Demonstrate using software to edit a video.²

D. Identify Difference Between Linear and Nonlinear Systems.
 1. Describe linear and nonlinear systems.
a. Demonstrate knowledge of analog video standards: NTSC, PAL, SECAM.¹

2. Identify skills required for editing using these systems.

E. Demonstrate Accurate Nonlinear Video Editing Techniques.
1. Identify appropriate software/hardware platforms for the digital editing project.
2. Capture video and import or digitize footage.
 a. Digital compression formats (CODECs).
 b. Resolution (rough cut-low resolution)
 c. Media folders and aliased media
 d. Name clips and reels (tapes)
3. Time and arrange video and audio clips on program timeline to form a logical and smoothly running story.¹
 a. A/B video tracks (or multiple layers of video)
 b. Trimming and expanding tracks
 c. Audio tracks (e.g., synced sound, unsynced sound, filters, volume control)
 d. Review program timeline to form a logical and smoothly running story.¹
4. Select the most effective shots for each scene.
5. Add transitions and effects (e.g., fades, dissolves, wipes, image effects).
6. Add titles and graphics as appropriate.
 a. Understand safe areas: title safe and action safe.¹
 b. Demonstrate and understand lower thirds.¹
 c. Create or prepare graphic.¹
 d. Understand keyframing or layering.¹
 e. Review accuracy of content: titles and credits.¹
7. Output final product onto prescribed formats.
 a. DVD
 b. Streaming video

F. Evaluate Completed Projects.
1. Review edited video to determine if corrections are necessary.¹
2. Critique and analyze completed video to determine if it accomplished the objectives for the project.¹
3. Participate in peer review critiques.

¹ODCTE objectives
²States’ Career Clusters - Career Cluster Resources for Arts, A/V Technology & Communications
All unmarked objectives are TTC instructor developed.

Teaching Methods: The class will primarily be taught by the lecture and demonstration method and supported by various media materials to address various learning styles. There will be question and answer sessions over material covered in lecture and media presentations. Supervised lab time is provided for students to complete required projects.

Grading Procedures: 1. Students are graded on theory and shop practice and performance.
2. Each course must be passed with seventy (70%) percent or better.
3. Grading scale: A=90-100%, B=80-89%, C=70-79%, D=60-69%, F=50-59%.
Description of Classroom, Laboratories, and Equipment:

Tulsa Technology Center campuses are owned and operated by Tulsa Technology Center School District No. 18. All programs provide students the opportunity to work with professionally certified instructors in modern, well-equipped facilities.

Available Certifications/College Credit

The student may be eligible to take state, national or industry exam after completion of the program. College credit may be issued from Oklahoma State University-Okmulgee or Tulsa Community College. See program counselor for additional information.

College Credit Eligibility:

The student must maintain a grade point average of 2.0 or better.